
vO >- 
CO a, 

1 Ü 
t 
v£> [U 

,-4 
cd 1-4 

Q PU 
H 

M 

P 1   ' 
to '0 

1      U4 u 

ESD-TDR-64-636 

ESD RECORÖ ^oPY 

SCIENTIFIC *^a»H6 12U   . W-07191 

<0 

PAT, A LANGUAGE FOR PROGRAMMING 

AND MAN-COMPUTER COMMUNICATION 

TECHNICAL DOCUMENTARY REPORT NO.    ESD-TDR- 64-636 

JUNE 1965 

R.  Silver 
C. Wells 

E8TI PROCESSED 

G DOC TAB     D PROJ OFFICER 

□ ACCESSION MASTER FILE 

Prepared for 
DATE. 

DIRECTORATE OF COMPUTERS 

ELECTRONIC SYSTEMS DIVISION 

AIR FORCE SYSTEMS COMMAND 

UNITED STATES AIR FORCE 

L. G. Hanscom Field, Bedford, Massachusetts 

ESTI CONTROL NR 

c* »»      /        or 

AL    46402 

JL -CV» 

Project 508 

Prepared by 

THE MITRE CORPORATION 
Bedford, Massachusetts 
Contract AF 19(628)-2390 

^t^vV 



Copies available at Clearing House for Federal 
Scientific and Technical Information (formerly Office 
of Technical Services). 

Qualified requesters may obtain copies from DDC. 
Orders will be expedited if placed through the librarian 
or other person designated to request documents 
from DDC. 

When US Government drawings, specifications, or 
other data are used for any purpose other than a 
definitely related government procurement oper- 
ation, the government thereby incurs no responsi- 
bility nor any obligation whatsoever; and the fact 
that the government may have formulated, fur- 
nished, or in any way supplied the said drawings, 
specifications, or other data is not to be regarded 
by implication or otherwise, as in any manner 
licensing the holder or any other person or corpo- 
ration, or conveying any rights or permission to 
manufacture, use, or sell any patented invention 
that may in any way be related thereto. 

Do     not     return     this   copy.    Retain  or  destroy. 



ESD-TDR-64-636 W-07191 

PAT, A LANGUAGE FOR PROGRAMMING 

AND MAN-COMPUTER COMMUNICATION 

TECHNICAL DOCUMENTARY REPORT NO.    ESD-TDR- 64-636 

JUNE 1965 

R. Silver 
C. Wells 

Prepared for 

DIRECTORATE OF COMPUTERS 

ELECTRONIC SYSTEMS DIVISION 

AUA FORCE SYSTEMS COMMAND 

UNITED STATES AIR FORCE 

L. G. Hanscom Field, Bedford, Massachusetts 

Project 508 

Prepared by 

THE MITRE CORPORATION 
Bedford, Massachusetts 

Contract AF 19(628)-2390 





PAT, A LANGUAGE FOR PROGRAMMING 

AND MAN-COMPUTER COMMUNICATION 

ABSTRACT 

PAT is a computer language of the macro-assembly type.   The program, which 
translates PAT into computer code, is designed to be used not only as a com- 
piler of programs, but as a symbolic interface between a user and a computer. 
In this latter capacity, it can serve to interpret commands and accept command 
definitions for such programs as a text editor, on-line debugger, or simulated 
desk calculator. 

The language and the translator have been designed to allow the structure of the 
translator itself to be modified by certain definitions encountered during the 
translation process. 

The rules for defining symbols and referring to them have been organized to 
facilitate combining independently written programs into a single unit. 

REVIEW AND APPROVAL 

This technical documentary report has been reviewed and is approved. 

,r*w SEYMOUR JEFFERY 
I       Majcr, US.AF 

Chief, Computer Division 
Directorate of Computers 

iii 





TABLE OF CONTENTS 
Page 

PREFACE vii 

SECTION I             INTRODUCTION 1 
PASS 1 1 
PASS 2 2 

SECTION n           SYNTAX OF THE LANGUAGE 3 
SEGMENTATION 3 
ALPHABET 3 
ATOMS 4 
SEGMENTATION RULES 4 
P-FORMED SEQUENCE 6 

SECTION m          ASSEMBLER-LEVEL STATEMENTS 7 
INSTRUCTIONS 7 
EXPRESSIONS 7 
PSEUDO-OPERATION 8 

SECTION IV          SEMANTICS 9 
MOLECULES 9 
TAILS 9 
DEFINITIONS 9 
INTERPRETATION OF SYMBOLS 10 

SECTION V SYMBOL-TABLE ENTRIES 12 

SECTION VI UNIFORM HANDLING OF SYMBOLS 13 

SECTION vn MACROS 14 
MACRO FORMULAS 14 
MACRO EXPANSION 14 
CREATED ATOMS 15 
OPEN FORM OF MACRO FORMULA 15 

SECTION vm ACTORS 16 
PSE UDO-OPERATIONS 16 
ACTORS WHICH DEFINE SYMBOLS 17 
PSE UDO-ARGUMENTS 19 
CONDITIONAL SEQUENCE 
REPEAT SEQUENCE 

20 
20 



TABLE OF CONTENTS (Cont'd.) 

Page 

SECTION DC PAT AS AN INTERPRETIVE LANGUAGE 
FOR ON-LINE DEBUGGING 

THE DEGUBBING PROBLEM 
ON-LINE DEBUGGING 
A DEBUGGING PROGRAM 
USmG THE COMMANDS 
DEFINING NEW COMMANDS 

22 
22 
23 
23 
25 
25 

BIBLIOGRAPHY 27 

LIST OF TABLES 

TABLE 

I 

II 

Symbol-Table Entries 

DB Subroutines 

Page 

12 

24 

VI 



PREFACE 

The translator described briefly in this report is in many respects quite 
similar to other contemporary assembler-compilers.   For example, the format 
of typical assembly-level statements may be quite similar to that of most free- 
field assembler statements. 

This language and its processor have been designed, however, to do all 
of the translation necessary for communication with a host of on-line programs 
in a time-shared system, as well as the more normal functions expected of such 
a program.   As a result, it incorporates certain features which are perhaps 
different from what one might expect. 

For those familiar with assemblers, the following brief discussion 
describes the basic features of the language and its processor. 

The translator is a two-pass processor.   The fundamental assembly 
algorithm is the well-known one in which an operation-code followed by a 
sequence of expressions is processed according to a property list associated 
with each op-code.    The processing is such that each expression is evaluated 
in turn and subjected to a masking and shifting operation before being combined 
by a logical OR with the base of the op-code.   Any given argument, or field 
expression, may be subjected to more specific manipulation if necessary. 

Pseudo-operations, as such, do not exist in this system; instead their 
place is taken by actors which differ from pseudo-operations in that they may 
appear at any point within the text. 

Macro-operations do not exist in this system; instead, their place is taken 
by macros which differ from macro-operations in that they may appear at any 
point within the text, and that their expansion may range from none, or one 
symbol to whole subprograms. 

The macros, themselves, are of the type which perform a purely textual 
transformation on the program string and which are handled by one processor 
rather than by separate macro generators.    The textual transformation per- 
formed is on the level of atoms, rather than on the character level,  as in some 
systems.   Both open and closed macro forms are provided, the open form 
appearing much like a macro-operation in use, and the closed form appearing 
like a function. 

The function of single-word "literals" is provided as a degenerate case of 
a "remote code" actor which processes a subprogram into a remote location. 

All definitions of the translator result from some act of an actor.   Among 
the items which may be defined at processing time are: 

vii 



(1) field properties for use in the basic assembly algorithm, 

(2) operation codes, 

(3) labels, 

(4) macros (both open and closed), 

(5) binary connectors for use in expressions evaluated 
at process time, 

(6) actors, and 

(7) internal code used to modify the translator itself. 

A rather involved regional naming scheme is provided which bears some 
resemblance to the block scheme of Algol.    The major difference between the 
two schemes is that each block is named, and any identifier in the text may have 
associated with it specific block names to force the evaluation of that particular 
identifier within a particular block or context.   This scheme was originally 
intended to provide the necessary discrimination between user and system 
symbols when the translator was used as an on-line interpreter for system 
programs; it has also proved useful in other ways. 

Repetitive processing of a string with sequential substitution of variables 
is provided by a "rep" actor which performs the function of the IRP pseudo- 
operation in Macro-FAP at any point within the textual string. 

Conditional processing of substrings is provided by a "cs" actor, which is 
similar to the conditional statement of LISP.   This actor works at any point 
within the textual string. 

This translator itself is programmed as a closed subroutine which accepts 
a sequence of characters as input and produces an object-program file in what 
is essentially a "load tape" form.   Since the translator is recursive, it is possible 
for it to call itself to process subsections of the text.    This feature allows the 
binary-connector, actor, and internal code definition capabilities to be imple- 
mented in a straightforward manner. 

Originally, the thought was to use the translator as a closed subroutine 
under the direction of the various system programs when on-line translation was 
desired.   Though this is possible, it has proven advantageous to merely define 
appropriate actors within a copy of the translator in order to provide the 
necessary system programs. In doing so, the tables within the translator become 
a part of the system program and are subject to more intimate manipulation, 
the full capabilities of the translator still being available. 

vm 



In addition to the bibliography at the end of this report, we have found that 
the literature relating to translators, especially on the assembler level, is often 
in the form of user manuals published by manufacturers. 

ix 



SECTION I 

INTRODUCTION 

PAT is intended to serve as a linguistic link between man and computer 

in an on-line environment.   The on-line computer is a tool which can be used 

by a man to facilitate bis work.   The tangible presence of the computer is a 

user console, conveniently located in the user's office.   We will suppose this 

console to be a typewriter, suitably modified so that the material typed by the 

user is transmitted to the computer, and also so that material generated by the 

computer is transmitted to the typewriter and printed by it. 

An on-line computer system should be responsive to the user's typed 

requests for computation, getting results back to him in as short a time as 

possible.    The PAT translator is designed with a bias toward speed of com- 

pilation, at the expense of efficiency of the resulting program, in an effort to 

satisfy this requirement. 

PAT consists of a macro-assembly language, similar to Macro-FAP. 

The basic alphabet of characters, and rules for constructing meaningful strings 

of characters are oriented toward typewriters, rather than punched cards. 

The translator is a closed subroutine, containing within itself no input- 

output operations.   It relies on the program which calls it to provide textual 

input on demand, and to accept output on demand, whether it be compiled code, 

listing text, or error diagnostics. 

PASS 1 

The input character string is segmented to form a sequence of symbols. 

This sequence is processed, allocating space for code, making definitions, and 

expanding macros.    Pass 1 produces two things:   definitions which are added to 

the symbol-table and intermediate output. 

1 



PASS 2 

The input to pass 2 is the intermediate output of pass 1.   This information 

is processed, producing binary output, listing, and error diagnostics, and 

expanding macros not encountered during pass 1. 



SECTION n 

SYNTAX OF THE LANGUAGE 

SEGMENTATION 

A program written in PAT consists of a sequence of atoms.   Each atom 

is a string of characters in the PAT alphabet.   The alphabet and the rules of 

segmentation by which a string of characters is broken up to form a sequence 

of atoms are described in the following paragraphs. 

ALPHABET 

The alphabet*  of PAT consists of 55 characters, divided into six 

classes: 

(1) Letters and digits (36): 

abcdefghijklmnopqrstuvwxyz   0123456789 

(2) Punctuation Characters (5): 

( ) ,   :   ; 

(3) Special Characters (9): 

$/\  + - * = ~ t 

(4) Quotes (2): 

\/ 

(5) Function Characters (3): 

space, tab, and carriage-return, which print as follows: 

*We consider a subset of the available alphabet in order to ease the presentation. 



ATOMS 

There are two classes of atoms:   identifiers, and punctuators. 

A punctuator is a one-character string consisting of one punctuation 

character. 

An identifier is one of three things: 

(1) A string of characters, all of which are either 

letters or digits. 

(2) A string of characters, the first of which is a left- 

quote, the last of which is a right-quote, containing 

no other right-quote. 

(3) A one-character string consisting of one special 

character. 

SEGMENTATION RULES 

Given a string of characters a, the segmentation rules specify how it is 

broken up into a sequence of atoms. 

The rules given below operate on  a to produce at most one atom   a, 

together with a residual character string a'.    The original character string is 

transformed into a sequence of atoms by applying the rules repeatedly to the 

successive residual strings until a null string is produced.    The appropriate 

rule to apply to  a  depends on the initial character -t of a. 

(1)     (Alphanumeric identifier)   If  i   is a letter or a digit, then  a 

is the largest initial segment of   a containing only letters or digits,   a 

is an identifier,   a'   is the string remaining when the initial segment  a 

is deleted from  a.    For brevity, we write  a'   =  a-a. 



(2) (Quoted identifier)  If i   is a left-quote, then the identifier 

a  is that initial segment of a containing just one right-quote.   (The string 

a is improper if there is no such segment.)  a'   = a-a. 

(3) (Punctuator)  If   i   is a punctuation character, then the punctuator 

a   is  t   itself, and  cr' -o-l. 

(4) O)  If t   is  "^)", then the punctuator  a   is   ";",  and   cr' = cr-l. 

(5) (Special character)   If i   is a special character, then the 

identifier   a   is  t   itself, and     a1 = cr-l. 

(6) (Space or tab)  If i   is a space or tab, then no atom is generated, 

and   cr' = cr-l. 

(7) (Comment)  If t   is right-quote, then let ß   be the largest initial 

segment of o not containing   "^ ".   No atom is generated, and  er' =  cr-ß. 

A quoted identifier consists literally of all the characters from its initial 

left-quote to its terminal right-quote.   Blanks and tabs are ignored outside 

quoted identifiers.   Comments are introduced by a right-quote outside a quoted 

identifier, and cause all succeeding characters up to, but not including the next 

" ^" to be ignored.   A  ""}" is converted into the atom ";".   Note that the 

strings "a Q b" and "ab" segment differently, whereas the strongs "a-b" 

and "a Q -0 b" segment the same, since "-" is not a letter or digit. 

Example 

The string  "=2ai*-add Nx 0 y /, 2^24; N^" a;b}"   appears as follows 

when typed: 

=2a addxxy'   ,2 

24> 

a;b 



Segmented, it produces the following sequence of atoms: 

2a 

add 
N    n   ' xOy 

24 

\ ^/ i 

These segmentation rules imply that PAT is a free-field language, the 

order in which the atoms occur being important, but not their placement on the 

typed page. 

P-FORMED SEQUENCE 

The sequence a of atoms is parenthetically well-formed (p-formed) 

if a contains an equal number of left-parentheses and right-parentheses, and 

every initial segment of a contains at least as many left-parentheses as right- 

parentheses. 

The parenthesis level   (p-level) of an occurrence of an atom  a   in a 

p-formed sequence  a  is the difference between the number of left-parentheses 

and the number of right-parentheses in the initial segment of a which precedes 

Q'. 



SECTION ni 

ASSEMBLER-LEVEL STATEMENTS 
- 

INSTRUCTIONS 

An instruction consists of an op-code symbol followed by a list of arguments, 

each of which is an expression.   If there is more than one argument field, the 

successive arguments are separated by commas.   For example,   "add a-5,1" is 

an instruction. 

A symbol defined as an op-code has a value consisting of a base number, 

plus a list of field specifications.   Each field specification consists of a mask 

number and an offset instruction. 

An instruction is processed by evaluating each argument-field expression, 

masking it by combining it with the appropriate mask number by a logical AND 

operation, then shifting it by performing the appropriate offset instruction, then 

combining the result with the base number by a logical OR operation. 

If the instruction has fewer arguments than the op-code has fields, then 

the instruction is processed as if the missing fields were zero, e. g. , "add a-5;" 

is equivalent to   "add a-5, 0;". 

EXPRESSIONS 

An expression is an algebraic formula evaluated (by integer arithmetic) 

at assembly time.   The binary connectors which can be used in forming 

expressions include "+",   "-",   "*",   "/",   and "\"   (remainder).   For example 

if a22  and b  are constants with values of  -3  and  14 respectively, then the 

expression  "(2*a22+37)/10-b\ 3"  has a value of +1. 



PSE UDO-OPERATION 

A certain set of expressions behave like conventional pseudo-operations. 

For example, the symbols "org" and "end" behave like their conventional 

counterparts.   The statement "org 100;"   sets the location counter to 100.   The 

statement "end start;" specifies that the program starting address is the value 

of "start". 



SECTION IV 

SEMANTICS 

This section explains what symbols are and what a context is.   The 

semantics of PAT is determined by the contextual meanings of symbols.   The 

symbol-table is the repository of meanings; those given initially and those 

created by definitions occurring during processing of a program.   Thus the 

semantics of the PAT language is a dynamic thing, defined only with respect 

to a given program. 

MOLECULES 

The sequence of atoms constituting a program can be grouped to form a 

sequence of molecules.   The colon is the glue which binds atoms into molecules. 

A molecule is either a punctuation atom other than   ":", or an identifier, or a 

sequence of identifiers separated by colons.   For example:   The sequence of 

molecules arising from the string   "a+:b:$:c;d:e"   is   a, +:b:$:c, ; ,   d:e. 

TAILS 

A tail is a (possibly null) sequence of identifiers. At any time during the 

processing of a program, there exists something called the current tail, which 

helps to establish ihe context in which symbols are defined and interpreted. 

DEFINITIONS 

To define is to establish the meaning of a symbol within a context by the 

concrete process of making an entry in the symbol-table.    These entries consist 

of four parts:   an identifier, a tail, a type, and a value.    The translator makes a 

definition when a defining operator is encountered in the program.    These 

operators have one property in common:   The symbol defined is determined by 

the molecule which follows the defining operator, together with the current tail. 



This molecule must be either an identifier w or a sequence of identifiers 

(JÜ-.ÜJ 
1" :o> .    (We regard the former as a special case of the latter in which 

n = 0.)   Let the current tail be the sequence of identifiers    T, , • • • , T   .    Then 
1 m 

in all cases, the symbol-table entry has atom a; and tail a>,, •.. , u , T, ,.. • , T   . 
1 n    1 m 

The type of the entry is defined according to the particular operator used, and 

the value depends on the defining statement itself.   We say that the symbol  co 

has been defined in the context  OJ 

Examples 

n    1 
,T 

m 

Defined 

Molecule Current tail Symbol Context 

abc null abc null 

z22 x,4y z22 x,4y 

z22:x 4y z22 x,4y 

INTERPRETATION OF SYMBOLS 

The translator is continually called upon to determine the meaning of a 

symbol in a context.    Formally, it encounters a molecule; if the molecule is a 

punctuation atom, then the meaning is intrinsic in the atom itself; if the mole- 

cule consists of a single atom and the atom is composed wholly of characters 

whose values    are less than the radix    , then the meaning is taken to be the 

appropriate numeric value after conversion.    Otherwise the translator obtains 

a symbol-table entry determined by this molecule together with the current tail. 

The characters have values determined by the simple collating sequence 
0,1,2,. .. ,9,a,b,. . . ,z. 

** 
The translator maintains a variable called the radix (nominal value ten) with 

respect to which all numeric conversions are made. 

10 



Let the molecule   ft be  u:u-... :w ,   and let the current tail be 
1 n 

T , • • • , T   .   The translator examines the symbol table to determine if there is 

an entry whose identifier is   a>, and whose tail is   «„,•••, w , T, , • • •. T   .     If 1 n   k        '  m 
there is no such entry, then the symbol   C<J  is not defined in this context.   If 

there is such an entry, then the translator uses the one for which  k   is least. 

Thus the translator searches for a meaning for ft in wider and wider contexts 

until it either finds an entry, or finds none at all. 

Examples 
Successive entries 

searched for: 
Molecule Current tail Atom Tail 

abc null abc null 

z22 x,4y z22 x,4y 
z22 4y 
z22 null 

z22:x 4y z22 x,4y 
z22 X 

11 



SECTION V 

SYMBOL-TABLE ENTRIES 

The symbol-table entries may be classified according to type.   There are 

seven types of entries:   constant, op-code, field-specification, field set, actor, 

macro, and binary-connector.   To each type there corresponds a value format 

(see Table I). 

Table I 

Symbol-Table Entries 

Type Value Format 

Constant A number occupying one memory word. 

Field-specification Mask,  occupying one memory word. 
Offset,  an accumulator shifting instruction. 

Field-set A list of fields,  each having been previously 
defined by a field specification command. 

Op-code Base,  a number occupying one memory word. 
Field set,   a reference to a symbol of type fieldset; 

used to control the processing of fields. 

Actor Starting location of a subroutine within the 
translator itself. 

Macro Number of arguments. 
Number of created atoms. 
Skeleton. 

Binary-connector Starting location of a subroutine within the translator. 
Precedence:   a number. 

12 



SECTION VI 

UNIFORM HANDLING OF SYMBOLS 

The basic assembly process involves translating a statement of the form 

"op-code field , • • • .field ;"  to produce a word of code.   To do this, the 

translator starts by fetching a symbol, i. e. , fetching a molecule from the 

current source of atoms and looking it up in context, discovering in this case 

that the symbol is an op-code.   The translator proceeds to evaluate the argument 

fields, which involves this same process of fetching symbols. 

If the fetched symbol is an actor, then the buck is passed to the subroutine 

specified by the value of the actor.    It is the responsibility of that routine to 

provide a symbol with which translation can be resumed. 

If the fetched symbol is a macro, then the buck is passed to the macro 

axpander.   This routine fetches the macro argument sequences from the current 

source and saves them.    It then obtains the macro skeleton from the symbol 

table entry, and changes the current source so that source atoms will be fetched 

from the macro skeleton (or argument sequences) until the skeleton is exhausted. 

By handling symbol fetching in a uniform way, we can generalize the 

notion of pseudo-operation to that of actor, and the notion of macro-operation 

to that of macro.   Any symbol fetched, be it operator-like, argument-like, or 

connector-like, may be an actor, forcing a subroutine call, or it may be a 

macro, forcing substitution of the macro skeleton into the atom stream. 

13 



SECTION vn 

MACROS 

MACRO FORMULAS 

A macro formula is a sequence of atoms of the form "ix(a , ■ • • , a )", 

where n is a symbol of type macro with n or more arguments, and the a, 

are macro arguments. 

A macro argument is a p-formed sequence of atoms containing no commas 

or semicolons at p-level zero. 

MACRO EXPANSION 

When the translator encounters a macro formula beginning with the 

symbol n, it responds by calling the macro expander, which performs 

the following steps. 

(1) Obtain from the entry for n the number of a of arguments, 

the number c of created atoms, and the skeleton   a . 

(2) Fetch the macro arguments OJ, , • • • , a    as sequences of atoms. 
l n 

If any a    is of the form (Ö), where ß  is p-formed, then the 

outer parentheses are stripped off, i.e. , the sequence ß, rather 

than 03), is used. 

(3) Construct a dummy placeholder table for the a + c placeholders 

that may be encountered in the skeleton (see dmac, in Section VIII.) 

(4) Pair each (stripped) argument sequence a.   with the placeholder 

d, (k = 1), • • • ,n).   If n < a, then pair each of the placeholders 

d      , • • • , d    with the null sequence. 

(5) Create c atoms, and pair them with the placeholders 

da+l''"'da+c- 
14 



(6) Save the current atom source,  and substitute for it a source 

which will extract atoms on demand from the skeleton a. 

(7) Using this new source, fetch the current symbol, and return. 

The macro source has two peculiarities.   First, if it obtains an atom which 

is the dummy placeholder  d, ,   then it pushes down the current source (skeleton), 

and switches over to a source which extracts atoms from the sequence paired 

with  d, .   Second, when a macro source exhausts the sequence it is operating on, 

it restores the previously saved source.    The process of saving and restoring 

sources is such that there are no restrictions on the type of symbol which may 

be encountered during translation of a macro. 

CREATED ATOMS 

The atoms that are created during macro expansion are unique and 

distinct from any atoms that the user may write.    They are of the form 

«•-!)■      >k>) t_- Iris • 

Example 

The definition "dmac sum a b c (fetch a; add b; store c)" having been made, 

the macro formula   "sum(x,y, z)" will expand into "fetch x; add y; store z", 

while the macro formula "sum(s,y, (z,w))"   will expand into "fetch s; add y; 

store z,w". 

OPEN FORM. OF MACRO FORMULA 

If the user thinks of the macro  n  as a macro-operation, he will prefer 

to write his macro formulas in the form   "/^ a  , • • • , a ", which is like an 

instruction, rather than   "ß(a  , • • • , a )",   which is like a function.    The first 

of these is called an open macro formula.   Either type may be used, but the 

type must be specified when the macro symbol is defined. 

15 



SECTION vni 

ACTORS 

When the translator encounters a symbol of type actor, it calls the sub- 

routine specified by the value of the symbol-table entry.   When that subroutine 

returns, it has established some other symbol as the current symbol.    For 

each of the actors described below, this current symbol is the source symbol 

next following the last argument of the actor, unless otherwise noted. 

PSEUDO-OPERATIONS 

The following actors behave like pseudo-operations. 

org e 

The actor  org sets the translator's location counter to the value of the 

expression  £. 

bss e 

The actor bss adds the value of the expression e to the location counter. 

end e 

The actor  end  sets the starting address of the object program to the 

value of the expression  e. 

block co 

The current tail is a (possibly null) sequence of identifiers  u., • • •, a> . 
1 n 

It is reset by block to   w, co,, • • • , to . J In 

endblock 

If the current tail is   w w , with  n > 0, then endblock resets it 1 n 
to  c2,...,V 

16 



ics g 

a   is a p-formed string of atoms.   The actor ics generates output words 

containing the string of characters representing the print names of the argument 

atoms.   Punctuation and non-quoted identifiers are represented directly, but the 

initial and final quotes of a quoted atom are elided.   The right-quote cannot be 

represented directly in a string, nor can the function characters be gracefully 

represented.   To overcome this difficulty, we let the character-pairs $r, $c, $s, 

$t, and $$ represent not themselves, but the characters right-quote, carriage- 

return, space, tab, and dollar, respectively. 

re 
■ 

Under normal conditions, if an actor tries to define a symbol which is 

already defined, an error condition will arise, and the definition will not be 

made.    The actor  re  forces the next following definition to be made generating 

a new entry in the symbol table, and suppresses the error indication if the 

symbol was already defined. 

change 

The actor change behaves like  re  except that the existing symbol table 

entry for the next definition will be changed, rather than a new entry formed. 

ACTORS WHICH DEFINE SYMBOLS 

The actor   "="   defines the molecule   ß to be of the constant type with a 

value of that of the location counter at the moment. 

equ fl c 

The molecule  Q  is defined by equ to be of the constant type with a value 

of that of the expression e. 

17 



syn flfl1 

The molecule Q is defined by syn to be of the type and value of ft', 

dmac no), , ö , a 

The  u    form a sequence of m  identifiers, and the Ö    form a sequence 
K K 

of n  identifiers,   co, ö  and a   are p-formed sequences of atoms.   The mole- 

cule   Q is defined by dmac to be of type macro, number of arguments  m, number 

of created atoms  n, and skeleton a', where  a'   is like  a   except for having 

an indexed dummy placeholder substituted for each occurrence of an   w    ora 

6 .   If n = 0, then the comma may be omitted,   ft may only be used in a closed 

macro formula. 

dmaco   Q w, , 6 , cr 

Except that n may only be used in an open macro formula, dmaco 

performs exactly as dmac. 

dfield n e, e' 

The molecule  Q is defined by dfield to be of the field-specification type 

with mask and offset equal to the values of the expressions  e  and  e', respec- 

tively. 

dfieldset * SL fi • • • fi  l   z n_ 

0 is defined by dfieldset to be the list consisting of field & , field ft 

... field  ft . n 

opd fi  <2L , e 

The molecule ft is defined by opd to be of type op-code, with base the 

value of expression e, and <b is a fieldset.    <&   is a symbol of type fieldset. 

18 



dactor  fl A 

Q is defined by dactor to be of the actor type with value (starting location) 

equal to the value of the expression X . 

dbinconn  £2 X , n 

The molecule  £2 is defined by dbinconn to be of the binary-connector type 

with starting location the value of the expression X ,  and precedence the 

value of the expression ir. 

PSEUDO-ARGUMENTS 

$ pretends to be a constant with value equal to the current location. 

intcode (a) 

a   is a p-formed sequence.   The translator is called by incode to translate 

the program a   hi such a way that the binary code produced is placed into 

memory as part of the translator itself.    The current symbol is then set by 

intcode to the constant type with the value of the starting location produced by 

translation.    The   "X "   field (starting location) in a dactor or dbinconn state- 

ment will generally be of the form intcode (CT). 

IM 

a   is a p-formed sequence.   I calls the translator to translate the program 

a   in such a way that all but the first word w of binary code produced is thrown 

away.   I then sets the current symbol to the constant type with value w.   The 

"e"  field  (offset) in a dfield statement will usually be of the form  1(a). 

loc(a) 

In pass 2, the translator maintains a list of generated words  w,, • • • , w , 
1 n 

and the location    X   into which w    is to be loaded.   The value w of the first 

19 



word is obtained by loc which then searches the list for an occurrence of w, 

adding w = w        to the end of the list if it does not find it.   In any case,   w  is 

then some w, , and loc sets the current symbol to the constant type with a value 

of X+k. 

0(e) 

0 evaluates the expression e with all numerals evaluated as octal, and then 

sets the current s3rmbol to the constant type with a value that of  e. 

D(e) 

D    evaluates the expression e  with all numerals evaluated as decimal, 

and then sets the current symbol to the constant type with a value that of   e. 

CONDITIONAL SEQUENCE   cs((cr Jen, (a Je», • • • , (<J   )e ) 
l   1      &   £ n   n 

The expressions  e,   are evaluated, one after the other, by cs.   If all of 

them have value zero, then the whole cs-sequence is ignored.   If not all of them 

have value zero, then the translator behaves as if it encountered the (p-formed) 

sequence a     instead of the whole cs-sequence, where  e,   is the first expression 

to have a non-zero value.    For example   "cs((fetch a; store b;)a-b)" is 

equivalent to "fetch a; store b;" if a-b has non-zero value (i.e., if a ^ b); other- 

wise it is equivalent to the null sequence. 

REPEAT SEQUENCE     rep w, <5Ao)(a    .. . ,a ) 
K .1 n 

The actor rep operates as follows.   A dummy macro u  is defined as if by 

"dmac   fi  u, Ö (ay.   In place of the sequence   "rep... " the translator sees the 

sequence "u(a)---u(a )". 
1 n' 

The rep actor can be used within a macro skeleton in the form 

"rep (*), <5, (^H a)"> where  a is one of the arguments of the macro.   Given a 
K 

particular macro formula in which "(8 1, • • • ,ß   )"   appears as the argument 

20 



a, the parentheses will be stripped off before substitution for a, and so there 

will be *n repetitions.    Of course n may vary from one macro formula to the 

next.   For example, consider the definition "dmaco call name args (branch 

name; rep z(arg z;)(args))".   Given this definition of the macro call, the 

statement "call sub, (a, (b, 5), (c, 2))" will expand into "branch sub; arg a; 

argb,5; arge, 2;". 

21 



SECTION IX 

PAT AS AN INTERPRETIVE LANGUAGE FOR ON-LINE DEBUGGING 

THE DEBUGGING PROBLEM 

The user who has written a program is confronted with the problem of 

getting that program to perform properly.   Between him and this goal stand 

all the errors that he has made from conceptual errors in the design of the 

program to blunders in coding.   Experience shows that the user can confidently 

expect some errors to evade the most careful scrutiny of his program.    The 

only way to proceed is for him to attempt to run the program, to observe its 

behavior, to attempt to deduce errors from this behavior, and to fix the errors 

thus uncovered.    The user remains in this debugging loop until the program 

behaves satisfactorily. 

When one considers debugging practice on a conventional off-line computer, 

one notes that the turn-around time (the time required to go once around the 

debugging loop) is long, typically half a day to two days.    Since the user wishes 

to minimize the total time needed to debug his program, he uses debugging 

tools which give him a maximum amount of information about how the program 

behaved.   The principal tool is the dump:   printed information produced by the 

computer showing the contents of selected portions of the computer memory at 

the time of the dump in a more or less appropriate form,   hi preparing for a 

debugging run, the user tries to anticipate all the contingencies that he can think 

of.   The run usually produces an enormous amount of information, most of which 

turns out to be superfluous.    He observes the case that has actually arisen, 

diagnoses it using the pertinent information, and ignores the rest.   It is not 

hard to trace the difficulty to its source:   the fact that the user cannot peer into 

the computer while his program is running and cannot stop the program at the 

moment a bug occurs. 

22 



ON-LINE DEBUGGING 

An on-line, fast-response computer has two properties that can be used to 

resolve this difficulty decisively:   user consoles, and fast response to requests 

for trivial computation.     Such a system can be used to explore events as they 

actually occur, without ever considering contingencies which might but in fact 

do not arise.   The user needs a debugging program tailored to on-line operation. 

A simplified version of such a program, showing the way in which the translator 

can be used to mediate communication between the user and the program follows. 

The user is seated at a console, engaged in debugging a program in the 

computer memory.   He needs to examine words in memory, change the contents 

of memory words, and run his program with breakpoints inserted to stop it and 

return control to the debugging program.   He requires at the minimum a de- 

bugging program with which he can communicate, which in turn can act on the 

program to be debugged, and which can communicate with him.   For this, he 

requires a language of commands which can be interpreted by the debugging 

program.   In addition, it would be useful to have a set of symbols referring to 

operations and locations in his program, and the ability to define new commands. 

We can avoid the design of an ad hoc debugging language and translator by using 

PAT and the PAT translator. 

A DEBUGGING PROGRAM 

Suppose that we have written a program called DB, which consists of an 

executive routine, five subroutines, and the translator.   DB itself has been 

written using PAT, and its symbol-table, incorporating certain symbols of DB 

together with the five macros listed in Table H, has been combined with that 

of the user. 

23 



^^^—^^^— 

Table II 

DB Subroutines 

Macro Formula Expansion Action of the Subroutine Called 

contents a call con:db 
arg a 

Type out contents of memory location a. 

set a, w call sefcdb Replace contents of memory location a 
arg a with the word w. 
wrd w 

break a call break:db Save a, the location into which a break- 
arg a point is to be inserted when control is 

transferred to the subject program. 

go a call go:db Save the contents of the breakpoint 
arg a location, insert there a jump back 

to DB, and jump to a. 

find a, b,m,w call find:db Search locations a through b.   Type 
arg a out location and contents for all words 
arg b which look like w through the mask m. 
wrd m 
wrd w 

DB waits for the user to type in a string of characters terminated by 

" J".   It then calls the translator, handing it the string consisting of "org 

workspace:db;" followed by the string just typed, followed by the string 

"jump wait:db; end;   } ".   Translating the string produces binary code which is 

loaded into the workspace by DB.   When the translator returns,   DB performs 

the code.   This calls one of the subroutines, with appropriate calling sequence 

parameters, and then jumps back to the DB executive routine to wait for a new 

command to be typed in. 

24 



USING THE COMMANDS 

If the user types "contents data+3 ^", the con subroutine types out the 

contents of data+3 where, presumably, data is a constant referring to some 

location in the user's program. 

Suppose the user wants to find all words in a thousand word block starting 

at beg which have address parts (right 16 bits) equal to ijk.   The proper 

command is 

"find beg,beg+1000,oc(177777), ijk}" 

DEFINING NEW COMMANDS 

The user is likely to use the find command discussed previously over and 

over again, each time examining the whole program for cells containing a 

suspect address.    The overhead of typing 32 characters can be reduced by de- 

fining a new command:   a command is just a macro, and the translator accepts 

macro definitions.    In particular it accepts: 

"dmaco fa address (find beg,beg+1000,oc(177777), address) } ". 

After having typed this definition, typing "fa ijk } " has the desired effect. 

Let us conclude with an elaborate example.   A useful technique for finding 

bugs is to allow the program to run a little bit at a time by specifying a break- 

point, going to the program, letting it run until the breakpoint exit is encountered, 

having a look, setting a new breakpoint a little further on, going back to the 

program at the previous breakpoint location, and so on.    The user types 

"break b; go a   }".   When DB gets control back, the user types some finds, 

contents, and sets.   Then he types "break c; go b }", and so on.   Suppose 

that he wants to define a command bgo that will not only combine the break 

and the go, but will also somehow remember the old breakpoint location, so 

25 



that he merely has to type   "bgo c  ^".   This can be done by typing: 

"equ oldbreak a; 

dmaco bgo x, c (syn c oldbreak; re equ oldbreak x; break x; go c) ^ ". 

Consider what happens when the user types "bgo c  "V\   The translator will 

create an atom, say    .. 1,   define it to be synonymous with oldbreak, i. e., 

a constant with the value of a, redefine oldbreak as a constant with the value 

of b, note the breakpoint at b, and go to .. 1,  that is, to a. 

R.  Silver 

C.  Wells 

26 



Bibliography 

Greenwald, I. D.   "A Technique for Handling Macro Instructions, " Comm. of 
ACM, V2, Nil, Nov.  1959. 

Mcllroy,   M. Douglas, Bell Telephone Laboratories,   "Macro Instruction 
Extensions of Compiler Languages," Comm. of ACM, V3, 1960. 

Naur, Peter "Revised Report on the Algorithmic Language ALGOL 60, " 
Comm. of ACM,  V6, Nl, Jan.  1963. 

27 



Security Classification 

DOCUMENT CONTROL DATA ■ R&D 
(Security claaailicatton 0/ lilt», body ot abatract and indexing annotation mull ba antatad whan lha overall report ia claaailied) 

1    QRIGINATIN G ACTIVITY (Corporate author; 

The MITRE Corporation 

Bedford, Mass. 

2a.   REPORT SECURITY   CLASSIFICATION 

Unclassified 
2b    GROUP 

3   REPORT TITLE 

PAT, A Language for Programming and Man-Computer Communication 

4   DESCRIPTIVE NOTES (Type ol report and Incluaiva dataa) 

N/A 
S   AUTHORfSJ (Lael name. It rat name, Initial) 

Silver, Roland and Wells, Codie S. 

6   REPORT DATE 

June, 1965 
7«.   TOTAL NO. OF   PACE» 

34 
7b. NO. OP REPS 

3 
8a    CONTRACT OR GRANT NO. 

AF19(628)-2390 
b.    PROJECT  NO. 

508 
c. 

d. 

• a.   ORIGINATOR'S REPORT NUMaERfSj 

ESD-TDR-64-636 

to.  OTHER REPORT  NOfS; (Any other numbara that may ba aaatgned 
thta report) 

W-07191 
10. A VA IL ABILITY/LIMITATION NOTICES 

Qualified requestors may obtain from DDC. 

DDC Release to CFSTI (formerly OTS) authorized. 
It. SUPPLEMENTARY NOTES 12   SPONSORING MILITARY ACTIVITY 

Directorate of Computers 
Electronic Systems Division 
L. G. Hanscom Field, Bedford 

13   ABSTRACT 

PAT is a computer language of the macro-assembly type.   The program, which translates 
PAT into computer code, is designed to be used not only as a compiler of programs, but 
as a symbolic interface between a user and a computer.    In this latter capacity, it can 
serve to interpret commands and accept command definitions for such programs as a text 
editor, on-line debugger, or simulated desk calculator. 

The language and the translator have been designed to allow the structure of the translator 
itself to be modified by certain definitions encountered during the translation process 

The rules for defining symbols and referring to them have been organized to facilitate 
combining independently written programs into a single unit 

DD ,!T., 1473 
Security Classification 



Security Classification 
14 

KEY WORDS 
LINK A 

ROLE *T 

LINK 8 

»OLE 

LINK C 

ROLE WT 

Programming Languages 
PAT 
Macro-assembly type 

Computer Languages 
PAT 

INSTRUCTIONS 

1.   ORIGINATING ACTIVITY:   Enter the name and address 
of the contractor, subcontractor, grantee, Department of De- 
fense activity or other organization (corporate author) issuing 
the report. 

2a.   REPORT SECUWTY CLASSIFICATION:   Enter the over- 
all security classification of the report.   Indicate whether 
"Restricted Data" is included.   Marking is to be in accord- 
ance with appropriate security regulations. 

2b.   GROUP:   Automatic downgrading is specified in DoD Di- 
rective 5200.10 and Armed Forces Industrial Manual.  Enter 
the group number.   Also, when applicable, show that optional 
markings have been used for Group 3 and Group 4 as author- 
ized. 

3. REPORT TITLE:   Enter the complete report title in all 
capital letters.   Titles in all cases should be unclassified. 
If a meaningful title cannot be selected without classifica- 
tion, show title classification in all capitals in parentheais 
immediately following the title. 

4. DESCRIPTIVE NOTES:   If appropriate, enter the type of 
report, e.g., interim, progress, summary, annual, or final. 
Give the inclusive dates when a specific reporting period is 
covered. 
5. AUTHOR(S):    Enter the name(s) of authors) as shown on 
or in the report.   Entei last name, first name, middle initial. 
If military, show rank end branch of service.   The name of 
the principal «. ithor is an absolute minimum requirement. 

6. REPORT DATI^    Enter the date of the report as day, 
month, year; or month, year.   If more than one date appeara 
on the report, use date of publication. 
la.    TOTAL NUMBER OF PAGES:   The total page count 
should follow normal pagination procedures, i.e., enter the 
number of pages containing information. 

7b.    NUMBER OF REFERENCES:    Enter the total number of 
references cited in the report. 

8a.   CONTRACT OR GRANT NUMBER:   If appropriate, enter 
the applicable number of the contract or grant under which 
the report was written. 

Sb, 8c, & 8a*. PROJECT NUMBER: Enter the appropriate 
military department identification, such as project number, 
subproject number, system numbers, task number, etc 
9a.   ORIGINATOR'S REPORT NUMBER(S):    Enter the offi- 
cial report number by which the document will be identified 
and controlled by the originating activity.   This number must 
be unique to this report. 
9b. OTHER REPORT NUMBER(S): If the report has been 
assigned any other report numbers (either by the originator 
or by the sponsor), also enter this number(s). 

10.   AVAILABILITY/LIMITATION NOTICES:   Enter any lim- 
itations on further dissemination of the report, other than thoae 

imposed by security classification, using standard statements 
such as: 

(1) "Qualified requesters may obtain copiea of this 
report from DDC" 

(2) "Foreign announcement and dissemination of this 
report by DDC is not authorized." 

(3) "U. S. Government agencies may obtain copies of 
this report directly from DDC.   Other qualified DDC 
uaers shall request through 

(4)     "U. S.  military agencies may obtain copies of this 
report directly from DDC   Other qualified users 
shall request through 

(5)    "All distribution of this report is controlled.   Qual- 
ified DDC users shall request through 

If the report has been furnished tc the Office of Technical 
Services, Department of Commerce, for sale to the public, indi- 
cate this fact and enter the price, if known. 

It   SUPPLEMENTARY NOTES: 
tory notes. 

12. SPONSORING MILITARY ACTIVITY: Enter the name of 
the departmental project office or laboratory sponsoring (pay- 
ing for) the research and development   Include address. 

13. ABSTRACT:   Enter an abstract giving a brief and factual 
summary of the document indicative of the report, even though 
it may also appear elsewhere in the body of the technical re- 
port.   If additional space is required, a continuation sheet shall 
be attached. 

Use for additional explana- 

It is highly desirable that the abstract of classified reports 
be unclassified.    Each paragraph of the abstract shall end with 
an indication of the military security classification of the in- 
formation in the paragraph, represented as (TS), (S). (C), or (U). 

There is no limitation en the length of the abstract.   How- 
ever, the suggested length is from ISO to 225 words. 

14.   KEY WORDS:   Key words are technically meaningful terms 
or short phrases that characterize a report and may be used as 
index entries for cataloging the report.   Key words must be 
selected so that no security classification is required.   Identi- 
fiers, such as equipment model designation, trade name, military 
project code name, geographic location, may be used as key 
words but will be followed by an indication of technical con- 
text.   The assignment of links, rules, and weights is optional 

Security Classification 


